Calcium imaging of rhythmic network activity in the developing spinal cord of the chick embryo.
نویسندگان
چکیده
Video-rate imaging of spinal neurons loaded with calcium-sensitive dyes was used to investigate the calcium dynamics and cellular organization of spontaneously active rhythm-generating networks in the spinal cord of E9-E12 chick embryos. Spinal neurons were loaded with bath-applied fura-2am. Motoneurons were also loaded by retrograde labeling with dextran-conjugated, calcium-sensitive dyes. Dye-filled motoneurons exhibited large fluorescent changes during antidromic stimulation of motor nerves, and an increase in the 340/380 fura fluorescence ratio that is indicative of increased intracellular free calcium. Rhythmic fluorescence changes in phase with motoneuron electrical activity were recorded from motoneurons and interneurons during episodes of evoked or spontaneous rhythmic motor activity. Fluorescent responses were present in the cytosol and in the perinuclear region, during antidromic stimulation and network-driven rhythmic activity. Optically active cells were mapped during rhythmic activity, revealing a widespread distribution in the transverse and horizontal planes of the spinal cord with the highest proportion in the ventrolateral part of the cord. Fluorescent signals were synchronized in different regions of the cord and were similar in time course in the lateral motor column and in the intermediate region. In the dorsal region the rhythm was less pronounced and the signal decayed after a large initial transient. Video-rate fluorescent measurements from individual cells confirmed that fluorescent signals were synchronized in interneurons and in motoneurons although the time course of the signal could vary between cells. Some of the interneurons exhibited tonic elevations of fluorescence for the duration of the episode whereas others were rhythmically active in phase with motoneurons. At the onset of each cycle of rhythmic activity the earliest fluorescent change occurred ventrolaterally, in and around the lateral motor column, from which it spread to the rest of the cord. The results suggest that neurons in the ventrolateral part of the spinal cord are important for rhythmogenesis and that axons traveling in the ventrolateral white matter may be involved in the rhythmic excitation of motoneurons and interneurons. The widespread synchrony of the rhythmic calcium transients may reflect the existence of extensive excitatory interconnections between spinal neurons. The network-driven calcium elevations in the cytosol and the perinuclear region may be important in mediating activity-dependent effects on the development of spinal neurons and networks.
منابع مشابه
Ventrolateral Origin of Each Cycle of Rhythmic Activity Generated by the Spinal Cord of the Chick Embryo
BACKGROUND The mechanisms responsible for generating rhythmic motor activity in the developing spinal cord of the chick embryo are poorly understood. Here we investigate whether the activity of motoneurons occurs before other neuronal populations at the beginning of each cycle of rhythmic discharge. METHODOLOGY/PRINCIPAL FINDINGS The spatiotemporal organization of neural activity in transvers...
متن کاملEmergence of Patterned Activity in the Developing Zebrafish Spinal Cord
BACKGROUND Developing neural networks display spontaneous and correlated rhythmic bursts of action potentials that are essential for circuit refinement. In the spinal cord, it is poorly understood how correlated activity is acquired and how its emergence relates to the formation of the spinal central pattern generator (CPG), the circuit that mediates rhythmic behaviors like walking and swimming...
متن کاملSpontaneous network activity transiently depresses synaptic transmission in the embryonic chick spinal cord.
We examined the effects of spontaneous or evoked episodes of rhythmic activity on synaptic transmission in several spinal pathways of embryonic day 9-12 chick embryos. We compared the amplitude of synaptic potentials evoked by stimulation of the ventrolateral funiculus (VLF), the dorsal or ventral roots, before and after episodes of activity. With the exception of the short-latency responses ev...
متن کاملHistomorphometric study of the spinal cord segments in the chick and adult male ostrich (Struthio camelus)
In this study, the vertical, transverse and oblique diameters of the spinal cord segments (C1, C6, C12, C18, T1, T4, L1, L4, L6 and L8) and the ratio of gray matter to white matter in chick (l month) and adult (18 months) male ostriches, each group consisted of 3 animals, were measured with standard micrometric method using 6 μm thick sections by light microscope. With advancement of age, the r...
متن کاملModeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network.
Spontaneous episodic activity is a general feature of developing neural networks. In the chick spinal cord, the activity comprises episodes of rhythmic discharge (duration 5-90 sec; cycle rate 0.1-2 Hz) that recur every 2-30 min. The activity does not depend on specialized connectivity or intrinsic bursting neurons and is generated by a network of functionally excitatory connections. Here, we d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 11 Pt 1 شماره
صفحات -
تاریخ انتشار 1994